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manycast RWA problem in optical
networks

Abstract The static routing and
wavelength  assignment  (RWA)
problem in Optical Networks is a
combinatorial optimization problem fit
to iterative search methods. In this
paper we deal with the static manycast
RWA problem in optical networks and
solve it by maximizing the number of
manycast request established for a
given number of wavelengths. In this
article, we implement and compare the
performance of two meta- heuristics
namely the GA "Genetic Algorithm”
and the TSA "Tabu Search
Algorithm”. The proposed algorithms
solve, approximately, the wavelength
assignment problem and a
backtracking approach is used to solve
the routing problem. We first
introduce our algorithms. We then
evaluate and compare their
performance. We corroborate our
theoretical findings through extensive
simulations. Representative empirical
results show the accuracy of our GA
and TSA.

1 Introduction

To take full advantage of the potential
of flber, the use of wavelength
division mul- tiplexing (WDM)
technology has become the option of
choice (Ramaswami 2006). The
reason for utilizing WDM is because
the bandwidth demand from average

bai toan RWA manycast tinh trong
cac mang quang hoc

Tom tit Bai toan dinh tuyén va gan
budc song (RWA) trong cac Mang
Quang Hoc 1a mot bai toan tbi uu
héa t6 hop thich hop Vé&i cac
phuong phap tim kiém lap. Trong
bai bdo nay, chiing t61 xét bai toadn
RWA manycast trong cac mang
quang hoC va giai no bang cach tbi
da hoa sb yéu cau manycast duoc
thiét 1ap cho mot s6 budc song nhat
dinh. Trong bai bdo nay, chung to1
trién khai va so sanh hiéu qua cua
hai giai thuat meta- heuristics cu thé
la “Giai thuat di truyén” GA va
Giai Thuat tim kiém Tabu” TSA.
Nhitng thuat toan dé xuat giai mot
cach gan dung bai toan gan budc
song va phuong phap quay lui duoc
dung dé giai bai toan dinh tuyén.
Truéc hét ching t6i trinh bay céc
thuat toan. Sau do, chung t6i danh
gia va so sanh hiéu qua cia chung.
Chung toi cang ¢ thém cac phat
hién 1y thuyét théng qua cac mod
phong mo rong. Cac két qua thuc
nghiém khang dinh d6 chinh xac
caa giai thuat GA va TSA cua
chung toi.




users is increasing at an unprecedented
rate. Additionally, aiming for higher
speed, it has the potential to be the
dominant technology choice for near
future Tera-bit communication
infrastructure. In fact, WDM can
provide unprecedented bandwidth,
reduce processing costs, and enable
efflcient failure handling (Ramaswami
and Sivarajan 1995). An end-to-end
lightpath has to be established prior to
the communication between any two
nodes in optical networks. A sequence
of lightpath requests arrive over time,
each lightpath having a random
holding time.

These should be set up dynamically by
determining a route across the network
connecting the source to the
destination and assigning a free
wavelength along the path.

Existing lightpaths cannot be rerouted
to accommodate new lightpath
requests until they are released, so
some of the lightpath requests may be
blocked if there is no free wavelength
along the path (Skorin-Kapov 2007).
Therefore, Anding a physical route for
each lightpath demand and assigning
to each route a wavelength, subject to
a set of constraints, is known as the
routing and wavelength assignment
(RWA) problem (Kharroubi et al.
2013; Ramamurthy and Mukherjee
1998; Khar- roubi 2014).

There are two variants of the RWA
problem: static RWA, where the
traffic require- ments are known in




advance, whenever a lightpath request
arrives, the RWA algorithms assign
the pre-allocated route and wavelength
for that request. In the dynamic RWA
whereby connection requests arrive in
some random fashion, a dynamic
RWA algo- rithm uses the current
state of the network to determine the
route for a given lightpath request.
The concept of a lightpath was
generalized into that of a light-tree
(Sahasrabuddhe and Mukherjee 1999;
Watel et al. 2015), which unlike a
lightpath, a light-tree has multiple
destination nodes; i.e it is a point-to-
multipoint communication. Thus a
light-tree forms a tree rooted at the
source node need to be established
rather than a path in the physical

topology.

Generally, the bulk of the
communication  established in a
network is unicast, where a single
source node sends data to a single
destination node. In our work, we
consider a new type of communication
termed Manycast (Cheung et al. 1994;
Bathula and Vokkarane 2010;
Charbonneau and Vokkarane 2010a).
The manycast is a generalization of
the multicast communication
paradigm (Singhal et al. 2006).
Indeed, manycast is the transmission
of information from one source to
multiple destinations simultaneously.
The key difference between multicast
and manyecast is that in multicast, the
destinations are specifled ahead of
time, whereas in manycast the




destinations must be chosen. The
future of many services such as video
con- ferencing, Grid Computing, e-
Science and  peer-to-peer  are
employing manycasting for data
delivery. The support of manycast in
the WDM networks of the future is
therefore  essential for  these
applications. This necessarily makes
manycast a power- ful communication
framework that is important for next-
generation applications (Jain 2006).

The objective of solving the manycast
RWA problem can be either, given a
flxed number of wavelengths and a set
of manycast requests, to maximize the
total number of manycast requests
admitted, or to minimize the number
of wavelengths used, provided that
wavelength availability is sufflcient to
route all the requests (Charbonneau
and Vokkarane 2010a). As far as we
know, there has been no work
addressing the manycast RWA
problem speciflcally for maximizing
the number of established manycast
requests. Given the hard computations
of the linear integer program
(Krishnaswamy and Sivarajan 2001),
we study the problem using meta-
heuristics. Our objective, given a flxed
number of wavelengths is to maximize
the number of manycast requests to be
established in a given session or traffic
matrix.

The next section reviews the previous




work. In Sect. 3, problem definition
and formulation is given. Section 4
suggests two different assignment
algorithms GA and TSA. In Sect. 5,
experimental results and a comparison
between the proposed approaches are
presented. Section 6 discusses the
empirical results obtained for the
suggested metaheuristics. The paper is
concluded in Sect. 7.

2 Previous work

The RWA problem can be divided into
two sub-problems, the path from
source to destination—this is the
routing part—and the wavelength
along the path, which is the
wavelength assignment part. Both of
these sub-problems are NP complete
(Jue 2001), and tightly linked together.
The manycast RWA issue is therefore
NP complete since it contains the
RWA problem as a special case.

Manycast is a special case of
multicast, in which from a single
resource we must reach k destination
nodes. These destination nodes are to
be selected instead of being given. In
fact, there are many previous works
that investigate the multicast problem.
This static multicast RWA was flrst
studied in Sahin and Azizoglu (2000)
and He et al. (2011) targeting the
objective of minimizing the blocking
probability. Manycast is also a
generalization of unicast where the
message needs to be delivered to any




one of the group. Indeed, there is a
wealth of recent work (Kharroubi et
al. 2013; Kharroubi 2014; Dzongang
et al. 2005; Qin et al. 2002; Kharroubi
et al. 2014), that has proposed a tabu
search metaheuristic and a genetic
algorithm to solve RWA prob- lem in
the unicast case. While in the
manycast case, in numerous previous
works, the manycast problem was flrst
presented as quorumcast (Cheung et
al. 1994; Low 1998; Wang et al.
2001). In quorumcast, messages are
sent to a subset of destinations (quo-
rum pool), which are selected from a
set. The authors in Charbonneau and
Vokkarane (2010a,b) have proposed
three heuristics to solve the manycast
problem. One of these heuristics is a
tabu search  metaheuristic. The
objective was to minimize the num-
ber of wavelengths required to satisfy
all the manycast requests. In the work
(She 2009), an ILP and several
heuristics have been proposed for
solving multi-resource manycast in
mesh networks. Few studies, however,
tackled the manycast service over
optical ~ burst-switched  networks
(Huang et al. 2007; She et al. 2007;
Bathula et al. 2009).

3 Problem definition and




formulation

3.1 Problem detinition

Let a networkbe represented as agraph
G(V, E), where V denotes the set of
network nodes and E represents the set
of unidirectional fibers. Assume that
lightpath requests are unidirectional,
each carrying W wavelengths. A
manycast request is represented as MR
{s, Dc, k} where s, D and k denote the
source, the set of candidate destination
nodes, and k <\Dc \ = m is the number
of destination nodes needed to be
reached out of m. If we change the
parameters of the manycast request,
we can also perform unicast (k=m=1).
Therefore, any algorithm that solves
the static manycast RWA problem, in
general, should  respect these
following constraints:

(1) Wavelength continuity
constraint: The wavelength continuity
constraint implies that a particular
request for a source-destination pair
must follow a single lightpath (Qin et
al. 2002).

(2) Wavelength conflict constraint:
The wavelength conflict constraint
states that a wavelength may be used
only once per fiber. Thus no two
signals can traverse along the same
wavelength in a particular fiber
(Skorin-Kapov 2007).

3.2  Problem formulation

The notation and variables used in our
proposed mathematical formulation is
given as follows:

NLPG Number of all lightpaths




in G.

R = (Ri)
Vectorthatcontainstherequestnumberto
whichalightpathbelongs.

NR  Number of all requests in G.

multiplicity(n) Number of connection
requests desired to be set up for one
request. Let Ii be the sum of all used
traffic by all requests. Such as:

NR
ii = multiplicity (n). Vn e{l, 2... Nr}
n=1

Let D = (dij) be the NLPG X NLPG
matrix, i.e.,

1, iflightpaths i and j share a physical
link,

0, otherwise

Let T = (Ti) be the 1 X NR vector, i.e.,

1, VA efl, 2 ..W} ifthe
wavelength A is assigned to the
lightpath - tree i,

0, otherwise

Let P = (Pi) be the 1 X NLPG vector,
ie.,

1, VA efl, 2. .W}, ifthe
wavelength A is assigned to the
lightpath i, 0, otherwise

Mathematical formulation

Our problem can be mathematically
formulated as follows:

NR

Maximize: F=f(0) =¢ii=1

Our objective is to maximize the
number of manycast requests that can
be established for a given number of
wavelengths in a given physical




topology.

Constraints:

In (1), wavelengths assigned must be
such that no two lightpaths that share a
physical link, belonging to different
requests, use the same wavelength on
that link.

NR

In (2), the sum X é&i of the elements of
the vector P that are not equal to zero,
cannot, i=1 under any circumstances,
exceed the number ii.

3.3 Network assumptions

We assume that splitting capabilities
and wavelength converters are not
adopted in our case. Actually, many
research  approaches have been
proposed to solve the manycast and
mostly the multicast problems by
splitting capability for different nodes
in the network i.e. whether or not
equipped  with  multicast-capable
optical cross connect (MC-OXC) (Cao
and Yu 2006). However, these
methods are costly in both fabrication
and power consumption (Le et al.
2015).

Figure 1 shows an example of a
manycast request where node S is the
source and nodes one through four are
some of the destinations of the
session.

As node 2 does not have the splitting
capability as shown in Figure 1, node
2 can only forward one copy (e.g. to
node 3). Therefore, a separate path
from S to node 4 is needed.




4 Our proposed GA and TSA for
solving the manycast RWA problem
Previous research has offered a variety
of solutions, from simple to complex
meta- heuristic algorithms for solving
the RWA complication. Here, we
extended the same
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Fig. 1 An example of manycasting
routing and wavelength assignment.
Node 2 has no wavelength conversion
and splitting capabilities

Fig. 2 Crossover phase

Fig. 3 Mutation phase

genetic algorithm (GA) and Tabu
search algorithm (TSA) presented in
(Kharroubi et al. 2013; Kbharroubi
2014; Kharroubi et al. 2014) based on
a backtracking approach but this time
to solve the Static Manycast RWA
problem.

4.1  Genetic algorithm (GA)

The GA is a search technique
originally invented by Holland (1992)
and used in computing to fInd true or
approximate solutions to optimization
and search problems. Indeed this
metaheuristic belongs to the larger
class of evolutionary algorithms which
is inspired on process of natural
selection and is routinely used to
generate useful solutions. Genetic
algorithms use biologically-derived
techniques such as inheritance,
mutation, natural selection, and
crossover (or recombination). The key
concepts of the GA explained below:




Initial population In this phase, each
gene in a chromosome solution
represents one of the paths generated
through a backtracking algorithm so
that we can explore all the candidate
paths between the origin and the
destination pairs. These candidate
solutions  are usually  called
chromosomes (or genomes) which
take, in our implementation, the

Fig. 4 Genetic algorithm flow chart

form of bit strings, each bit position
(refer to as locus) in the chromosome
has A possible values (called alleles),
such as A e {1, 2. ..W - 1}. During this
step, we initialize the variables that
will be used namely: n, P, Pmax and
Fmax.

Selection in  this  step, the
chromosomes of the next generation
are selected from the current
population Dby evaluating all the
chromosomes using a Atness function
choosing the best individual.
Crossover at this stage, the selected
generation, with a certain crossover
probability a chromosome is asked for
mating with another chromosome. In
other world, two parent chromosomes
(i.e. two random vectors P) are chosen
to reproduce and their crossover
results in two new child chromosomes,
which are added to the second
generation of the search space. In fact,
this crossover site will take place
between the source destination pairs of
paths rather than inside paths that
belong to the same source-destination




pair. Thus, paths that belong to the
same source-destination pair will
maintain their identity during the
crossover  process. Hence, the
constraint (2) will not be violated in
this phase. The process is repeated
until we get an appropriate number of
candidate solutions in the second
generation of the pool. The crossover
process is shown in Fig. 2.

Mutation This operator randomly flips
some of the bits in a chromosome
which is con- sidered as a random
mutation of the new pool. Thus, some
randomly chosen elements of the
vector P (P contains the best-found
solution in terms of the assigned
wavelength

Fig. 5 Tabu search metaheuristic flow
chart

to the chosen paths for a manycast
request) containing the value A which
represents the wavelength that the
lightpath will use, will be randomly
replaced by another value of A. In this
phase of mutation the created
chromosome replaces itself regardless
of the Atness function. This concept is
shown in Fig. 3.

More details about GA can be found
in Kharroubi et al. (2013), Kharroubi
(2014), Kharroubi et al. (2014),
Melanie (1996) and Oliveira and
Pardalos (2011). The main working
steps of our proposed GA are shown
above in the general flow (Fig. 4).




4.2  Tabu search algorithm (TSA)

The TSA is often wused for
combinatorial optimization problems
(Oliveira and Pardalos 2011). It
explores the solution space for a
number of iterations from an initial
random solution to another better
solution in the neighborhood of the
former one. The best solution from the
neighborhood is then chosen as the
current solution and the process
continues. In order to avoid getting
stuck in the same set of solutions, a
tabu list is implemented. This tabu list
maintains the moves for the last
visited solutions that will not be
selected again as long as they are on
the tabu list. Another two important
steps of tabu search are intensiflcation
and diversiflcation. The diversiflcation
step is executed when no improvement
is achieved on the best solution after a
number of iterations. The purpose of
intensiflcation is to perform a more
thorough search of the neighborhood
for an optimal solution. The key
concepts of the TSA explained below:

Fig. 6 The NSF network used for
performance evaluation

Initial solution Every tabu search
starts with an initial solution. This step
will be performed after the
backtracking algorithm is operated. In
our case, during this step, we initialize
the variables that will be used namely:
n, P, Pmax and Fmax, then we
implement and initialize an empty
tabu list. We create in each iteration




flve random initial solutions (i.e. flve
vectors P) and evaluate their current
solutions.

Tabu list The tabu list is a list
containing the last several moves
carried out and that will not be
selected again as long as they are on
the tabu list.

Neighborhood A move from the
current solution produces a new
solution. A number of such new
solutions compose a neighborhood.
This move operation is performed
randomly to generate the
neighborhood. Once it’s generated a
new non-tabu solution will be added to
the tabu list to become the current
solution to become the current
solution in the next iteration.

Finally, our TSA will start from the
candidate solutions and until the
maximum number of iterations is
reached, the algorithm will test a new
solution by updating the vector Pmax.
Therefore, each time the constraint (1)
IS met then the current solution F will
be replaced by the best-found solution
Fmax until the end of the algorithm.
More details about TSA can be found
in Kharroubi et al. (2013), Kharroubi
(2014), Dzongang et al. (2005), Qin et
al. (2002), Kharroubi et al. (2014),
Oliveira and Pardalos (2011), Glover
and Laguna (1997) and Wang et al.
(2005). The main working steps of our
proposed TSA are shown in Fig. 5.




4.3  Backtracking algorithm

In the work (Kharroubi et al. 2013,
2014; Kharroubi 2014) the authors
haveproposed a backtracking
algorithm for routing unicast demands.
This algorithm can be extended for
manycast if a path search is done for
every destination one-by-one, using
this method we will be able to explore
all the candidate paths between the
origin and the destination pairs of the
trees.

All work in this paper focuses on
extension of the work done on static
unicast RWA problem in using the
backtracking algorithm which has
been proposed in Khar- roubi et al.
(2013). Previous studies have focused
on k-shortest path (Ramaswami and
Sivarajan 1995; Dzongang et al. 2005;
Chamberland et al. 2005), which has
been widely used in the literature to
find alternative paths. Hence by using
the backtracking approach our initial
search space will contain not only the
k-shortest paths between each source-
destination pair, but also all the
possible candidate lightpaths. More
details about the backtracking can be
found in Kharroubi et al. (2013, 2014)
and Kharroubi (2014). We reiterate
our proposed backtracking as below,
with its pseudo-code.

Algorithm backtracking()




5 Numerical results

In this section, we present numerical
results from simulations to
demonstrate the performance of our
proposed solution approaches. We ran
extensive simulations on the 14-node
NSF network shown in Fig. 6.

Fig. 7 Satisfied manycast requests for
D = 4 and k=2 as well as the time
taken versus the number of manycasts
and wavelengths on the 14-node NSF
network for both GA and TSA
algorithms

We carried out an experiment that
consisted of 144 extensive tests. The
experiment is executed for 8 manycast
groups consisting of 10, 20, 30, 40, 50,
60, 70 and 80 requests, running each
test on two different algorithms with
the same initial population and
parameters. The number of
wavelengths, W, chosen for network
simulation, is 64, 160, and 320, which
are practical values today (Singhal et
al. 2006). Moreover, we used three
different destination set sizes (4, 6 and
8). For each request MR, we used
three different sizes of Dc, and k =
Dc/2. The maximum number of
iterations is fixed at 5000.

The hardware used for our
experiments is an Intel(R) Core(TM)
17- 4790k CPU 4 GHZ processor with
8 GB RAM, running under Ubuntu
14.04.2. All algorithms were compiled




by GCC compiler of Qt Creator 3.4
(based on Qt 5.4 “64Bit”).

As it can Dbe seen from the
performance results, we noticed that
the number of established sets of
manycast sessions increases with the
increase of W . Manycast sessions
decrease when the set of destination is
larger:

. When D = 4 (Fig. 7), the
proposed TSA gives better results
compared to GA tech- nique
especially when W = 320. However,
for other wavelengths, TSA approach

Fig. 8 Satisfied manycast requests for
D = 6 and k=3 as well as the time
taken versus the number of manycasts
and wavelengths on the 14-node NSF
network for both GA and TSA
algorithms

performs better for small manycast
group sizes, but for larger sizes TSA
satisfies up to 12 % and GA achieves
up to a 10 % improvement over TSA.

. When D =6 (Fig. 8), we noticed
that  GA  outperformed  TSA,
specifically when the manycast group
sizes is more than 40, this out-
performance goes up to 30 %.

. When D = 8 (Fig. 9), GA has
shown a decent performance that is
close to the TSA method when W =
64. Otherwise, we observed that GA
has a better improvement over TSA.




. The time spent by GA or TSA
to solve the manycast problem
increases rapidly depending on the
number of manycasts groups as well
as the number of the wave- lengths.
However, the time spent using the
TSA is ten times higher than GA. This
is the only disadvantage of using TSA.
In fact, since we were dealing with the
static case, computations were done
offline.

. GA performs very efficiently in
terms of speed.

. We should remark that TSA has
shown sufficient performance to solve
the many- cast RWA problem in many
cases. Nevertheless, it takes a while to
reach its end even if the solution has
already been found after only a few
iterations from the

Fig. 9 Satisfied manycast requests for
D = 8 and k=4 as well as the time
taken versus the number of manycasts
and wavelengths on the 14-node NSF
network for both GA and TSA
algorithms

beginning. Thus, we considered the
time and minimum number of
iterations of the best found solution for
the future work.

6 Discussion

In small manycast group sizes TSA
largely performs better than GA. In
terms of a solution, however, TSA has
a higher run time than GA. GA run
times are very low compared to the
TSA approach. The TSA can still be




optimized to reduce the run time, since
the best solution can be found after
only a few iterations from the
beginning. Indeed, this run time issue
doesn’t affect the optimal solution
since these computations are done
offline. Conversely, GA has shown it
can perform better than TSA by up to
20 %, especially for large manycast
group sizes. This can be explained by
the crossover operator used by GA
which maintains diversity in the
solution space. Related to the
wavelength variation, the results are
somewhat predictable, since it is easier
for small size manycast requests to be
nearly accepted, most notably when
the wavelength number is large. In
contrast, large-sized requests often
require a high amount of network
resources, affecting the number of
requests that could be satisfled.

Regarding the fairness issue, we have
observed that GA achieves better
fairness among the manycast groups in
terms of satisfying groups of
connections, whereas the TSA have
shown low fairness, speciflcally when
the manycast groups increase. For the
wavelength reuse issue, we have
noticed that the probability of the
reuse of exciting wavelengths is
higher only if the frequency of
occurrence of a common physical link
is very low, seeing that lately the
number of wavelengths has been
increasing, so this wavelength reuse
problem will be nonexistent.

Our proposed TSA and GA




approaches reach an acceptable
solution. Our perfor- mance evaluation
of 144 tests has conflrmed that,
although much research has been
proposed to solve the multicast RWA
problem, only a few studies have tried
to deal with the manycast RWA issue
specially using the backtracking
algorithm. It is, there- fore, important
to develop more new metaheuristics
for solving the manycast RWA
problem.

7 Conclusion

In this article wehave implemented
and compared two metaheuristics to
solve the static manycast RWA
problem, with a special focus on
maximizing the number of manycast
requests established for a given
number of wavelengths. The problem
was studied for the static case only.
We proposed two metaheuristics to
compute the approximated solutions,
in which GA works best when the
manycast group sizes are larger. This
IS when we increased the manycast set
sizez. TSA has shown good
performance for small manycast group
sizes. The routing sub-problem was
solved using a backtracking algorithm.
The proposed GA and TSA in this
paper were applicable to a real NSF
network. A relevant comparison,
including the performance and the
time involved, was made between the
two algorithms, making a total of 144
experiments. The time spent by TSA,
on average, is 10 times higher than
GA.







